Again, we consider the fundamental problem of cataloging all the groups of some given order \(n \), up to isomorphism. The goal of this chapter is to state and prove the Fundamental Theorem of Finite Abelian Groups, which solves the subproblem of cataloging all the abelian groups of order \(n \).

Recall that, if \((G, \ast)\) is a group and \((H, \ast)\) is a subgroup of \((G, \ast)\), then the set of distinct right cosets of \(H \) in \(G \) is a partition of \(G \). We denote this set of cosets by \(G/H \); that is,

\[
G/H = \{ Hx \mid x \in G \}
\]

We wish to define an operation \(\otimes \) on \(G/H \) so that \((G/H, \otimes)\) is a group. The obvious candidate is this: for \(x_1, x_2 \in G \),

\[
Hx_1 \otimes Hx_2 = H(x_1 \ast x_2)
\]

It is not difficult to show that, if \(\otimes \) is well-defined, then:

1. \(\otimes \) is associative;
2. If \(e \) is the identity element of \(G \), then \(He = H \) is the identity element of \(G/H \);
3. If \(x^{-1} \) is the inverse of \(x \) in \(G \), then \(Hx^{-1} \) is the inverse of \(Hx \) in \(G/H \).

See Exercise 2. Thus, \((G/H, \otimes)\) will be a group provided the operation \(\otimes \) is well-defined on \(G/H \).

The problem is that a given right coset of \(H \) in \(G \) may have different “names.” For example, if

\[
G = D_4 = \{ e, a, a^2, a^3, b, ab, a^2b, a^3b \}
\]

(with \(|a| = 4, |b| = 2, b \neq a^2\), and \(ab = a^3b\)) and \(H = \langle b \rangle = \{ e, b \} \), then:

\[
H = \{ e, b \} = Hb
\]

\[
Ha = \{ a, a^3b \} = Ha^3b
\]

\[
Ha^2 = \{ a^2, a^2b \} = Ha^2b
\]

\[
Ha^3 = \{ a^3, ab \} = H(ab)
\]

Thus, \(Ha^3 \) and \(H(ab) \) refer to the same right coset. Hence, if \(\otimes \) is well-defined, then \(Ha \otimes Ha^3 \) should equal \(Ha \otimes H(ab) \). However, note that

\[
Ha \otimes Ha^3 = H(a \ast a^3) = He = H, \quad \text{whereas} \quad Ha \otimes H(ab) = H(a \ast ab) = Ha^2b = Ha^2
\]

So \(Ha \otimes Ha^3 \neq Ha \otimes H(ab) \), and it follows that \(\otimes \) is not well-defined in this case.
In the general case, suppose \(x_1, x_2, x_3, x_4 \in G \) with \(Hx_1 = Hx_3 \) and \(Hx_2 = Hx_4 \). Then there exist \(h_1, h_2, h_3, h_4 \in H \) such that
\[
h_1 \ast x_1 = h_3 \ast x_3 \quad \text{and} \quad h_2 \ast x_2 = h_4 \ast x_4
\]
in order for \(\otimes \) to be well-defined, we need \(Hx_1 \otimes Hx_2 = Hx_3 \otimes Hx_4 \). This will be true provided \(Hx_1 \otimes Hx_2 = Hx_3 \otimes Hx_2 \) and \(Hx_3 \otimes Hx_2 = Hx_3 \otimes Hx_4 \).

Let's check these. First,
\[
Hx_1 \otimes Hx_2 = H(x_1 \ast x_2) = H(h_1^{-1} \ast h_3 \ast x_3 \ast x_2) = H(x_3 \ast x_2) \quad \text{since} \quad h_1^{-1} \ast h_3 \in H
\]
\[
= Hx_3 \otimes Hx_2
\]
So, no problem with that one. Next,
\[
Hx_3 \otimes Hx_2 = H(x_3 \ast x_2) = H(x_3 \ast h_2^{-1} \ast h_4 \ast x_4) = H(h \ast x_3 \ast x_4) \quad \text{provided} \quad x_3H = Hx_3
\]
\[
= H(x_3 \ast x_4)
\]
\[
= Hx_3 \otimes Hx_4
\]
Thus, in order for \(\otimes \) to be well-defined, we need \(xH = Hx \) for each \(x \in G \); that is, for any element \(x \) of \(G \), we need the left and right cosets \(xH \) and \(Hx \) to be the same set.

Definition 1: Let \(G \) be a group and let \(H \) be a subgroup of \(G \). We call \(H \) a **normal subgroup** provided
\[
xH = Hx
\]
for every \(x \in G \). We denote the fact that \(H \) is a normal subgroup of \(G \) by writing \(H \triangleleft G \).

We remark that, if \(e \) is the identity element of \(G \), then both \(\{e\} \triangleleft G \) and \(G \triangleleft G \); that is, both of the trivial subgroups of \(G \) are normal subgroups. For nontrivial subgroups, we often apply the following result.

Theorem 1 (Normal Subgroup Test): For any group \(G \) and any subgroup \(H \) of \(G \), \(H \) is a normal subgroup of \(G \) if and only if
\[
ghg^{-1} \in H
\]
for any elements \(h \) and \(g \) with \(h \in H \) and \(g \in G \).

Proof: Let \(G \) be a group and let \(H \) be a subgroup of \(G \).
For necessity, suppose for some elements h and g with $h \in H$ and $g \in G$ that $ghg^{-1} \notin H$. We claim that $gH \neq Hg$, and hence that H is not a normal subgroup. Suppose, to the contrary, that $gH = Hg$. Then $gh \in Hg$, and so there is some element $h' \in H$ such that $gh = h'g$. But then $ghg^{-1} = h' \in H$, a contradiction.

For sufficiency, assume that $ghg^{-1} \in H$ for any elements h and g with $h \in H$ and $g \in G$. To show that $H \triangleleft G$, it suffices to show that $gH = Hg$. Let $x \in gH$. Then $x = gh$ for some $h \in H$. Hence, $xg^{-1} = ghg^{-1} = h'$ for some $h' \in H$. Thus, $x = h'g \in Hg$. This shows that $gH \subseteq Hg$. Using a similar argument, it can be shown that $Hg \subseteq gH$. Therefore, $gH = Hg$, as was to be shown.

The following corollary is an immediate consequence of Theorem 1. Recall that the center of a group G is the subgroup C defined by

$$C = \{h \in G \mid gh = hg \text{ for all } g \in G\}$$

Hence, if $h \in C$ and $g \in G$, then

$$ghg^{-1} = (gh)g^{-1} = h(gg^{-1}) = h \in C$$

Corollary 2: For any group G:

1. If G is abelian, then any subgroup H is a normal subgroup; that is, every subgroup of an abelian group is a normal subgroup.

2. The center C_G of G is a normal subgroup of G.

There is an additional class of normal subgroups that occurs frequently enough to deserve special mention.

Theorem 3: For any finite group G of even order, if H is a subgroup of G and

$$2 |H| = |G|$$

then H is a normal subgroup of G.

Proof: Let G be a finite group of even order and let H be a subgroup of G such that $2|H| = |G|$; that is $|G : H| = 2$. Then, for any $x \in H$, $xH = H = Hx$. Also, for any $x \in G - H$, $xH = G - H = Hx$, since both $\{H, xH\}$ and $\{H, Hx\}$ are partitions of G. It follows from Definition 1 that $H \triangleleft G$.

Example 1: Find all the nontrivial normal subgroups of D_6.

Solution: Recall that

\[D_6 = \langle r, s \mid |r| = 6, |s| = 2, s \neq r^3, sr = r^5s \rangle \]

The nontrivial subgroups of \(D_6 \) are:

\[
\begin{align*}
H_1 &= \langle r \rangle = \{e, r, r^2, r^3, r^4, r^5\} \\
H_2 &= \{e, r^2, r^4, s, r^2s, r^4s\} \cong D_3 \\
H_3 &= \{e, r^2, r^4, rs, r^3s, r^5s\} \cong D_3 \\
H_4 &= \{e, r^3, s, r^3s\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\
H_5 &= \{e, r^3, rs, r^4s\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\
H_6 &= \{e, r^3, r^2s, r^5s\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \\
H_7 &= \langle r^2 \rangle = \{e, r^2, r^4\} \\
H_9 &= \{e, s\} \\
H_{10} &= \langle rs \rangle = \{e, rs\} \\
H_{11} &= \langle r^2s \rangle = \{e, r^2s\} \\
H_{12} &= \langle r^3s \rangle = \{e, r^3s\} \\
H_{13} &= \langle r^4s \rangle = \{e, r^4s\} \\
H_{14} &= \langle r^5s \rangle = \{e, r^5s\}
\end{align*}
\]

Each of \(H_1, H_2, \) and \(H_3 \) has index 3 in \(D_6 \), and hence are normal by Theorem 3. Also, \(H_8 \) is the center of \(D_6 \), and hence is normal by Corollary 2.

For \(H_7 \), note that \(sr^2s^{-1} = r^4 \) and \(sr^4s^{-1} = r^2 \). It follows (see Exercise 4) that \(H_7 \triangleleft D_6 \).

For \(H_4 \), note that

\[rsr^{-1} = rsr^5 = r(rs) = r^2s \notin H_4 \]

Thus, \(H_4 \) is not a normal subgroup. By similar reasoning, it can be shown that none of the subgroups \(H_5, H_6, H_9, H_{10}, H_{11}, H_{12}, H_{13}, H_{14} \) is a normal subgroup of \(D_6 \). Therefore, \(D_6 \) has precisely five nontrivial normal subgroups: \(H_1, H_2, H_3, H_7, \) and \(H_8 \).

Definition 2: Let \((G, \ast)\) be a group and let \(H \) be a normal subgroup of \(G \). Then \((G/H, \otimes)\) is a group, with the operation \(\otimes \) defined by

\[Hx_1 \otimes Hx_2 = H(x_1 \ast x_2) \]

The group \(G/H \) is called the factor group (or quotient group) of \(G \) by \(H \).
2. If G is finite, then

$$|G/H| = |G : H| = \frac{|G|}{|H|}$$

3. If G is abelian, then G/H is abelian.

4. If x has finite order in G, then Hx has finite order in G/H, and the order of Hx in G/H is a factor of the order of x in G — see Exercise 6.

With regard to the last remark, we have two possible interpretations for the notation $|Hx|$ — it could mean the cardinality of the coset Hx, or it could mean the order of the element Hx in the factor group G/H. Since the cardinality of Hx is generally not an issue (it is the same as the cardinality of H), we will take $|Hx|$ to mean the order of Hx in the factor group G/H, unless explicitly stated otherwise.

If the operation for G is considered to be a form of “multiplication,” then we will, as usual, use juxtaposition to denote the operation in G and the operation in G/H. That is, we will write \star as

$$(Hx_1)(Hx_2) = H(x_1x_2)$$

On the other hand, if the operation in G is considered to be a form of “addition,” then we'll write \star as

$$(H + x_1) + (H + x_2) = H + (x_1 + x_2)$$

Example 2: Refer to Example 1. Find:

(a) D_6/H_1

(b) D_6/H_2

(c) D_6/H_7

(d) D_6/H_8

Solution: Before getting into the details, we compute the orders of these four factor groups. Note that

$$|D_6/H_1| = 2 = |D_6/H_2|, \quad |D_6/H_7| = 4, \quad \text{and} \quad |D_6/H_8| = 6$$

(a) Since D_6/H_1 has order 2, it is isomorphic to \mathbb{Z}_2. We note that

$$D_6/H_1 = \{H_1, H_1s\}$$

Of course, if you answered that $D_6/H_1 = \{H_1r, H_1r^2s\}$, you are not wrong, since $H_1 = H_1r$ and $H_1s = H_1r^2s$.

(b) Likewise, $D_6/H_2 = \{H_2, H_2r\}$ is isomorphic to \mathbb{Z}_2.

(c) Since \(D_6/H_7 \) has order 4, it is isomorphic to either \(\mathbb{Z}_4 \) or to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). First, note that \(H_7 = \{r, r^3, r^5\} \in D_6/H_7 \). Let's find \(|H_7r|\) (the order of \(H_7r \)):

\[
(H_7r)^2 = (H_7r)(H_7r) = H_7
\]

Thus, \(|H_7r| = 2 \) and \(\langle H_7r \rangle = \{H_7, H_7r\} \). Next, note that \(s \notin H_7 \cup H_7r \), so \(H_7s \neq H_7 \) and \(H_7s \neq H_7r \). Since the order of \(s \) in \(D_6 \) is 2, it follows from remark 4 above that \(|H_7s| = 2 \). Note that \(H_7s = \{s, r^2s, r^4s\} \). Likewise, \(H_7\langle rs \rangle = \{rs, r^3s, r^5s\} \) has order 2 in \(D_6/H_7 \). Therefore, \(D_6/H_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \). The complete operation table for \(D_6/H_7 \) is shown below.

<table>
<thead>
<tr>
<th></th>
<th>(H_7)</th>
<th>(H_7r)</th>
<th>(H_7s)</th>
<th>(H_7rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_7)</td>
<td>(H_7)</td>
<td>(H_7r)</td>
<td>(H_7s)</td>
<td>(H_7rs)</td>
</tr>
<tr>
<td>(H_7r)</td>
<td>(H_7r)</td>
<td>(H_7)</td>
<td>(H_7rs)</td>
<td>(H_7s)</td>
</tr>
<tr>
<td>(H_7s)</td>
<td>(H_7s)</td>
<td>(H_7rs)</td>
<td>(H_7)</td>
<td>(H_7r)</td>
</tr>
<tr>
<td>(H_7rs)</td>
<td>(H_7rs)</td>
<td>(H_7s)</td>
<td>(H_7r)</td>
<td>(H_7)</td>
</tr>
</tbody>
</table>

(d) **Exercise:** Show that \(D_6/H_8 \cong D_3 \).

Example 3: Consider the group \((\mathbb{Z}, +)\) and the subgroup \((8\mathbb{Z}, +)\), with

\[8\mathbb{Z} = \{ \ldots, -16, -8, 0, 8, 16, \ldots \}\]

(the set of multiples of 8). Since the group \(\mathbb{Z} \) is abelian, \(8\mathbb{Z} \triangleleft \mathbb{Z} \). What can we say about the factor group \(\mathbb{Z}/8\mathbb{Z} \)?

Solution: Since \(\mathbb{Z} \) is abelian, \(\mathbb{Z}/8\mathbb{Z} \) is abelian by remark 3 above. Using left cosets rather than right cosets (which we can do, since \(8\mathbb{Z} \triangleleft \mathbb{Z} \)), we note that the distinct left cosets of \(8\mathbb{Z} \) in \(\mathbb{Z} \) are:

\[
8\mathbb{Z} = \{ \ldots, -16, -8, 0, 8, 16, \ldots \}
\]
\[
1 + 8\mathbb{Z} = \{ \ldots, -15, -7, 1, 9, 17, \ldots \}
\]
\[
2 + 8\mathbb{Z} = \{ \ldots, -14, -6, 2, 10, 18, \ldots \}
\]
\[
3 + 8\mathbb{Z} = \{ \ldots, -13, -5, 3, 11, 19, \ldots \}
\]
\[
4 + 8\mathbb{Z} = \{ \ldots, -12, -4, 4, 12, 20, \ldots \}
\]
\[
5 + 8\mathbb{Z} = \{ \ldots, -11, -3, 5, 13, 21, \ldots \}
\]
\[
6 + 8\mathbb{Z} = \{ \ldots, -10, -2, 6, 14, 22, \ldots \}
\]
\[
7 + 8\mathbb{Z} = \{ \ldots, -9, -1, 7, 15, 23, \ldots \}
\]

Thus, \(\mathbb{Z}/8\mathbb{Z} \) is an abelian group of order 8, and thus is isomorphic to one of \(\mathbb{Z}_8 \), \(\mathbb{Z}_4 \times \mathbb{Z}_2 \), or \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \).
We claim that $\mathbb{Z}/8\mathbb{Z} = \langle 1 + 8\mathbb{Z} \rangle$, and hence that $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$. To see this, note that

$$(1 + 8\mathbb{Z})^2 = (1 + 8\mathbb{Z}) + (1 + 8\mathbb{Z}) = 2 + 8\mathbb{Z}$$

$$(1 + 8\mathbb{Z})^3 = (1 + 8\mathbb{Z}) + (1 + 8\mathbb{Z})^2 = 3 + 8\mathbb{Z}$$

$$\vdots$$

$$(1 + 8\mathbb{Z})^7 = (1 + 8\mathbb{Z}) + (1 + 8\mathbb{Z})^6 = 7 + 8\mathbb{Z}$$

$$(1 + 8\mathbb{Z})^8 = (1 + 8\mathbb{Z}) + (1 + 8\mathbb{Z})^7 = 8\mathbb{Z}$$

Generalizing Example 3, if n is an integer with $n > 1$, then

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$$

Now let's see how factor groups can help us determine all the groups of some given order n, up to isomorphism. We begin with the fundamental theorem of finite abelian groups.

Theorem 4: Let n be a positive integer and let G be an abelian group of order n. Then either G is isomorphic to \mathbb{Z}_n (the cyclic group of order n), or G is isomorphic to a direct product of cyclic groups; in particular:

$$G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$$

where n_1, n_2, \ldots, n_k are positive integers, each greater than 1, such that

$$n = n_1n_2\cdots n_k \quad \text{and} \quad n_k \mid \cdots \mid n_2 \mid n_1$$

that is, for each integer i, $1 \leq i < k$, n_i is a multiple of n_{i+1}.

Before proving Theorem 4, let's give an example to get a better feel for what the theorem is saying.

Example 4: List the abelian groups of order 72, up to isomorphism.

Solution: Essentially, Theorem 4 says that any abelian group G of order 72 is a direct product of cyclic groups. If there is a single factor in this direct product, then $G \cong \mathbb{Z}_{72}$.

If there are two factors in the direct product, then $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ with $72 = n_1n_2$, $n_2 > 1$, and n_1 a multiple of n_2. So, we simply need to figure out the nontrivial ways to factor 72 (that is, don't use $72 \cdot 1$) so that the first factor is a multiple of the second factor. Doing so yields the following groups:

$$\mathbb{Z}_{36} \times \mathbb{Z}_2, \quad \mathbb{Z}_{24} \times \mathbb{Z}_3, \quad \mathbb{Z}_{12} \times \mathbb{Z}_6$$
Note that the group \(\mathbb{Z}_{18} \times \mathbb{Z}_4 \) is not listed. The simple reason, in view of the theorem, is that 18 is not a multiple of 4. The more subtle reason is this: in \(\mathbb{Z}_{18} \times \mathbb{Z}_4 \), the element \((1, 1)\) has order
\[
\text{lcm}(18, 4) = 36
\]
Thus, in fact, \(\mathbb{Z}_{18} \times \mathbb{Z}_4 \cong \mathbb{Z}_{36} \times \mathbb{Z}_2 \).

Next, we consider when there are three factors in the direct product. Here, we need to express 72 as \(n_1n_2n_3 \), with \(n_3 > 1 \), \(n_2 \) a multiple of \(n_3 \), and \(n_1 \) a multiple of \(n_2 \). Doing so yields the following groups:
\[
\mathbb{Z}_{18} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \quad \text{and} \quad \mathbb{Z}_6 \times \mathbb{Z}_6 \times \mathbb{Z}_2
\]

What about four factors? We leave it as an exercise to show that there is no way to factor 72 as \(n_1n_2n_3n_4 \) such that \(n_4 > 1 \), \(n_3 \) is a multiple of \(n_4 \), \(n_2 \) is a multiple of \(n_3 \), and \(n_1 \) is a multiple of \(n_2 \).

In conclusion, up to isomorphism, there are precisely six abelian groups of order 72:
\[
\mathbb{Z}_{72}, \quad \mathbb{Z}_{36} \times \mathbb{Z}_2, \quad \mathbb{Z}_{24} \times \mathbb{Z}_3, \quad \mathbb{Z}_{12} \times \mathbb{Z}_6, \quad \mathbb{Z}_{18} \times \mathbb{Z}_2 \times \mathbb{Z}_2, \quad \mathbb{Z}_6 \times \mathbb{Z}_6 \times \mathbb{Z}_2
\]

Proof of Theorem 4: The proof is by induction on \(n \). We already know that, if \(n = 1 \) or \(n \) is prime, then there is a unique abelian group of order \(n \) up to isomorphism, namely, \(\mathbb{Z}_n \), so this anchors the induction.

Let \(n \) be an integer, \(n \geq 4 \), and assume the result of the theorem holds for any abelian group \(G' \) of order \(n' \), \(1 \leq n' < n \). Let \(G \) be an abelian group of order \(n \) with identity \(e \). We first present an algorithm for expressing \(G \) as an internal direct product of subgroups of \(G \).

Step 1. Select an element \(a_1 \) in \(G \) of maximum order \(n_1 \), and let \(H_1 = \langle a_1 \rangle \). If \(H_1 = G \), then \(G \) is cyclic and we're done. If not, then let \(G_1 = H_1 \), let \(i = 1 \), and proceed to the next step.

Step 2. Select an element \(a_{i+1} \) in \(G \) of maximum order \(n_{i+1} \) such that
\[
G_i \cap \langle a_{i+1} \rangle = \{e\}
\]
Exercise: Show that this can always be done.) Let \(H_{i+1} = \langle a_{i+1} \rangle \) and \(G_{i+1} = G_i H_{i+1} = H_1 \cdots H_i H_{i+1} \). If \(G_{i+1} = G \), stop; otherwise, increment \(i \) and repeat Step 2.

Now then, suppose the algorithm terminates with \(G = G_k = H_1 H_2 \cdots H_k \), \(k \geq 2 \). Then
\[
H_1 \cap H_2 \cap \cdots \cap H_k = \{e\} \]
and so G is the internal direct product of H_1, H_2, \ldots, H_k. It follows that $n = n_1 n_2 \cdots n_k$. We claim that G is isomorphic to

$$\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$$

with $n = n_1 n_2 \cdots n_k$ and n_i is a multiple of n_{i+1} for each integer i, $1 \leq i < k$. It turns out that the orders n_1, n_2, \ldots, n_k are those found by the algorithm, but for now let's just assume that $n_1 = |H_1|$, let $G' = H_2 \cdots H_k$, and let $n' = |G'|$.

Then G' is an abelian group of order less than n, and it follows by the induction hypothesis that G' is isomorphic to a direct product of cyclic groups, say

$$\mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$$

with $n' = n_2 \cdots n_k$ and n_i is a multiple of n_{i+1} for each integer i, $2 \leq i < k$. (Note: It is possible that $k = 2$, in which case G' is cyclic.) Let ϕ' denote the isomorphism.

Since $G = H_1 G'$ with $H_1 \cap G' = \{e\}$, we know that an element x in G can be uniquely expressed as a product of the form $a_1^t g$ with $0 \leq t < n_1$ and $g \in G'$. We define $\phi : G \to \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ by

$$\phi(x) = (t, \phi'(g))$$

(technically, the image of ϕ is $\mathbb{Z}_{n_1} \times (\mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k})$, but hey, close enough!) It is straightforward to show that ϕ is an isomorphism; see Exercise 14.

To complete the proof, it remains to show that n_1 is a multiple of n_2. Suppose, to the contrary, that this is not the case, and let $a_2 = \phi^{-1}(0, 1, 0, \ldots, 0)$. Then

$$|a_1 a_2| = |\phi(a_1 a_2)| = |\phi(a_1) + \phi(a_2)| = |(1, 1, 0, \ldots, 0)| = \text{lcm}(n_1, n_2, 1, \ldots, 1) > n_1$$

This contradicts the choice of a_1 as an element of G with maximum order, and thus completes the proof.

\[\Box\]

Example 5: The group U_{56} is abelian. To what direct product of cyclic groups is it isomorphic?

Solution: The order of U_{56} is $\phi(56) = \phi(2^3 \cdot 7) = \phi(2^3)\phi(7) = 2^2 \cdot 6 = 2^3 \cdot 3 = 24$. Since $56 = 2^3 \cdot 7$ is not a prime power or twice a prime power, we know that U_{56} is not cyclic. Hence, U_{56} is isomorphic to one of the following abelian groups of order 24:

$$\mathbb{Z}_{12} \times \mathbb{Z}_{2} \quad \text{or} \quad \mathbb{Z}_{6} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$$

Checking the prime elements in U_{56}, we find that, for any $p \in \{3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 51, 53\}$,
\[p^6 = 1 \]

It follows that, for any \(x \in U_{56}, x^6 = 1. \) For instance, let \(x = 33. \) Then
\[33^6 = (3 \cdot 11)^6 = 3^6 \cdot 11^6 = 1 \cdot 1 = 1 \]

Hence, \(U_{56} \) has no elements of order 12, and so \(U_{56} \cong \mathbb{Z}_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2. \)

If we follow the algorithm given in the proof of Theorem 6.4, we might choose \(a_1 = 3, a_2 = 13, \) and \(a_3 = 29. \)

The abelian groups \(U_n, \) for \(n \geq 2, \) are important, so we provide an additional result concerning their structure. Define
\[\lambda(n) = \max\{|x| \mid x \in U_n\} \]

that is, \(\lambda(n) \) is the maximum order among the elements of \(U_n. \) This function is known as \textit{Carmichael’s lambda function}, and \(\lambda(n) \) is also called the \textit{least universal exponent for \(n, \)} since \(\lambda(n) \) is the smallest positive integer \(t \) with the property that
\[x^t = 1 \]

for every element \(x \in U_n. \) We have the following result for computing \(\lambda. \)

Theorem 5: Let \(n \) and \(k \) be positive integers. Then:

1. \(\lambda(2) = 1 \) and \(\lambda(4) = 2. \)
2. \(\lambda(2^k) = 2^{k-2} \) for \(k \geq 3. \)
3. If \(n \) is an odd prime power — that is, if \(n = p^k \) for some odd prime \(p, \) then \(\lambda(n) = \phi(n) = p^k(p-1). \)
4. If \(n = n_1n_2 \) with \(1 < n_1, n_2 \leq n \) and \(\gcd(n_1, n_2) = 1, \) then
\[\lambda(n) = \text{lcm}(\lambda(n_1)\lambda(n_2)) \]

Example 6: Both \(U_{45} \) and \(U_{72} \) are abelian groups of order 24. Thus, by Theorem 4, each of these groups is isomorphic to
\[\mathbb{Z}_{24} \quad \text{or} \quad \mathbb{Z}_{12} \times \mathbb{Z}_2 \quad \text{or} \quad \mathbb{Z}_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \]

Apply Theorem 5 to determine which one.

Solution: For \(U_{45}, \) we have that
\[\lambda(45) = \lambda(5 \cdot 9) = \text{lcm}(\lambda(5), \lambda(9)) = \text{lcm}(\phi(5), \phi(9)) = \text{lcm}(4, 6) = 12 \]

Therefore, \(U_{45} \cong \mathbb{Z}_{12} \times \mathbb{Z}_2. \)
For U_{72}, we have that
\[\lambda(72) = \lambda(8 \cdot 9) = \text{lcm}(\lambda(8), \lambda(9)) = \text{lcm}(2, 6) = 6 \]
Therefore, $U_{72} \cong \mathbb{Z}_6 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Next, we prove an important result concerning groups of order p^2, with p a prime.

Theorem 6: Let G be a nonabelian group with center C_G. Then G/C_G is not cyclic.

Proof: Let G be a nonabelian group with center $C = C_G$ and suppose, to the contrary, that G/C_G is cyclic. Then G/C_G has a generator, say Cb, with $b \in G - C$. Letting t denote the order Cb, we see that the distinct right cosets of C in G are
\[C, \ Cb, \ Cb^2, \ \ldots, \ Cb^{t-1} \]
Let g_1 and g_2 be two arbitrary elements of G. Then $g_1 = z_1b^i$ and $g_2 = z_2b^j$ for some $z_1, z_2 \in C$ and some integers i and j between 0 and $t - 1$. Hence,
\[g_1g_2 = (z_1b^i)(z_2b^j) = \cdots = (z_2b^j)(z_1b^i) = g_2g_1 \]
But this means that G is abelian, contradicting our assumption that G is not abelian. This completes the proof.

Exercise: Fill in the missing steps above. Hint: Use the fact that both z_1 and z_2 are in the center of G, and $b^ib^j = b^jb^i$.

Example 7: Let G be a nonabelian group of order 12. What can be said about G/C_G?

Solution: Well, since G is nonabelian, $C = C_G$ is a proper subgroup of G. Hence, the order of C is 1, 2, 3, 4, or 6.

If $|C| = 6$, then $|G/C| = 2$, and it follows that $G/C \cong \mathbb{Z}_2$. However, this is ruled out by Theorem 6. A similar argument can be used to show that $|C| \neq 4$.

If $|C| = 3$, then $|G/C| = 4$. Again, by Theorem 6, it is impossible to have $G/C \cong \mathbb{Z}_4$. Hence, $G/C \cong K$, the Klein-four group.

If $|C| = 2$, then $|G/C| = 6$. Again, having $G/C \cong \mathbb{Z}_6$ is ruled out by Theorem 6. Hence, $G/C \cong D_3$. This is what actually happens when $G = D_6$ or $G = T$.

Finally, of course, if $|C| = 1$, then $G/C \cong G$. This is what actually happens when $G = A_4$.

Given a group G and a subgroup H of G, we know from Theorem 1 that $H \triangleleft G$ if and only if
\[ghg^{-1} \in H \]
for any elements h and g with $h \in H$ and $g \in G$. This suggests fixing an element $x \in G$ and looking at the set
\[\{gxg^{-1} \mid g \in G\} \]
This set is called the conjugacy class of x, and we want to show that the distinct conjugacy classes form a partition of G.

Recalling that partitions come from equivalence relations, we define the relation \sim on G by
\[x \sim y \iff y = gxg^{-1} \text{ for some } g \in G \]
This relation is called conjugacy.

Example 8: Show that conjugacy is an equivalence relation on a group G. That is, show that conjugacy is:
1. reflexive: $x \sim x$ for any $x \in G$.
2. symmetric: For all $x, y \in G$, if $x \sim y$, then $y \sim x$.
3. transitive: For all $x, y, z \in G$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

Exercise: Show (a), (b), and (c).

Recall that, when we have an equivalence relation \sim on a set X, then the set of distinct equivalence classes is a partition of X, where the equivalence class containing x is
\[[x] = \{y \in X \mid x \sim y\} = \{y \in X \mid y \sim x\} \]
In the case of the conjugacy relation on a group G, the equivalence class containing x is
\[[x] = \{y \in G \mid x \sim y\} = \{gxg^{-1} \mid g \in G\} \]
We make the following remarks:
1. If e is the identity element of G, then $[e] = \{e\}$.
2. If g commutes with x, then $gxg^{-1} = x$. Hence, in computing $[x]$, we can ignore those elements g that commute with x; in particular we can ignore $g \in \langle x \rangle$.
3. If C_G denotes the center of G, then
\[x \in C_G \iff [x] = \{x\} \]
Hence, the notion of conjugacy is interesting only when the group G is nonabelian.
Example 9: Let's work out the conjugacy classes for several small nonabelian groups, namely:

(a) D_3
(b) D_4
(c) Q

Solution: For (a), recall that

$$D_3 = \langle r, s \mid |r| = 3, |s| = 2, sr = r^2 s \rangle$$

As remarked, $[e] = \{e\}$, and e is the only element in the center of D_3. Let's find $[r]$:

$$srs^{-1} = srs = r^2 s^2 = r^2$$

$$(rs)(rs)^{-1} = r(srs^{-1})r^{-1} = r(r^2) r^{-1} = r^3$$

$$(r^2 s)(r^2 s)^{-1} = r^2(srs^{-1})(r^2)^{-1} = r^2(r^2)r = r^3$$

Hence, $[r] = \{r, r^2\} = [r^2]$. Next, let's find $[s]$:

$$rsr^{-1} = rsr^2 = r(sr)r = r(r^2)s r = sr = r^2 s$$

$$r^2s(r^2)^{-1} = r^2sr = r^2(r^2)s = rs$$

It follows that $[s] = \{s, rs, r^2s\}$. Therefore, using conjugacy classes, we obtain the following partition of D_3:

$$D_3 = [e] \cup [r] \cup [s] = \{e\} \cup \{r, r^2\} \cup \{s, rs, r^2s\}$$

For (b), recall that

$$D_4 = \langle r, s \mid |r| = 4, |s| = 2, s \neq r^2, sr = r^3 s \rangle$$

As mentioned in Example 1, the center of $D_4 = \{e, r^2\}$, so that $[e] = \{e\}$ and $[r^2] = \{r^2\}$. Let's find $[r]$:

$$srs^{-1} = srs = r^3 s^2 = r^3$$

$$(rs)(rs)^{-1} = r(srs^{-1})r^{-1} = r(r^3)r^{-1} = r^3$$

$$(r^2 s)(r^2 s)^{-1} = r^2(srs^{-1})(r^2)^{-1} = r^2(r^3)r^2 = r^3$$

$$(r^3 s)(r^3 s)^{-1} = r^3(srs^{-1})(r^3)^{-1} = r^3(r^3)r = r^3$$

Hence, $[r] = \{r, r^3\}$. Next, let's find $[s]$:

$$rsr^{-1} = rsr^3 = r(sr)r^2 = r(r^3)s r^2 = sr^2 = r^2 s$$

$$r^3s(r^3)^{-1} = r^3sr = r^3(r^3)s = r^2 s$$

$$s(r^3)^{-1} = rsr^3 = r^2 s$$

$$(r^3 s)(r^3 s)^{-1} = r^3sr = r^2 s$$

Hence, $[s] = \{s, r^2 s\}$. It follows from the remarks made above that $[rs] = \{rs, r^3 s\}$.

Therefore, using conjugacy classes, we obtain the following partition of D_4:

$$D_4 = \{e\} \cup \{r\} \cup \{r^2\} \cup \{s, r s\} = \{e\} \cup \{r, r^3\} \cup \{r^2\} \cup \{s, r^2 s\} \cup \{r s, r^3 s\}$$

(c) **Exercise:** Work out the conjugacy classes for the quaternion group Q.

Let G be a finite nonabelian group and let $x \in G$. We have noted that, in computing $[x]$, we can ignore those elements $g \in G$ that commute with x. This set of elements has a name. It is called the centralizer of x in G, and is denoted by $C_G(x)$, or simply by C_x if the group under consideration is understood.

Exercise: Show that C_x is a subgroup of G.

Our next result relates the cardinality of the conjugacy class containing x to the index of the centralizer of x.

Theorem 7: Let G be a finite nonabelian group and let $x \in G$. Then

$$|\{x\}| = |G : C_x| = \frac{|G|}{|C_x|}$$

In words, the cardinality of the conjugacy class for x is equal to the index in G of the centralizer of x.

Proof: Recall that $|G : C_x|$ is the number of left cosets of C_x in G. Thus, to show that $|\{x\}|$ is equal to $|G : C_x|$, it suffices to construct a bijection from $\{x\}$ to the set of left cosets of C_x. We do this by mapping the conjugate $g x g^{-1}$ of x to the left coset $g C_x$.

First, since two conjugates of x can be the same element of G, we need to show that the mapping is well-defined. Well, for $g_1, g_2 \in G$,

$$g_1 x g_1^{-1} = g_2 x g_2^{-1} \iff g_2^{-1} g_1 x g_1^{-1} g_2 = x$$

$$\iff g_2^{-1} g_1 x (g_2^{-1} g_1)^{-1} = x$$

$$\iff g_2^{-1} g_1 \in C_x$$

$$\iff g_1 C_x = g_2 C_x$$

This shows that the mapping is well-defined, and also that it is one-to-one. The mapping is clearly onto, since the preimage of the left coset $g C_x$ is the conjugate $g x g^{-1}$ of x. This completes the proof.

The result of Theorem 7 can be written in the form

$$|\{x\}| |C_x| = |G|$$
Thus, we see that, for a finite group, the cardinality of any conjugacy class is a factor of the order of \(G \). Of course, ♦ is trivial when \(x \) belongs to the center of \(G \), for in this case \([x] = \{x\} \) and \(C_x = G \).

Keep in mind that the distinct conjugacy classes of \(G \) form a partition of \(G \). Hence, if \(G \) is a finite nonabelian group, we can write

\[
|G| = \sum \left| [x] \right|
\]

where the sum is over the distinct conjugacy classes of \(G \). Letting \(C \) be the center of \(G \), we can then split the sum on the right into two sums:

\[
|G| = \sum_{x \in C} \left| [x] \right| + \sum_{x \not\in C} \left| [x] \right|
\]

Of course, each term in the first sum is 1, and so the first sum is simply the order of \(C \). This yields the following important result.

Theorem 8 (Class Equation): Let \(G \) be a finite nonabelian group, let \(C \) be the center of \(G \), and, for \(x \in G \), let \(C_x \) be the centralizer of \(x \). Then

\[
|G| = |C| + \sum |[x]| = |C| + \sum |G : C_x|
\]

where both sums are over the distinct conjugacy classes of \(G \) containing more than one element (that is, over those elements \(x \in G - C \)).

The class equation is especially useful when the order a nonabelian group \(G \) is a power of some prime \(p \) — such groups are termed \(p \)-groups.

Corollary 9: Let \(p \) be a prime and let \(G \) be a nonabelian group with order a power of \(p \). Then the center \(C \) of \(G \) contains at least \(p \) elements.

Proof: Under the assumption that \(p \) is a prime and that the order of \(G \) is a power of \(p \), consider the class equation ♦. Note that \(p \) is a factor of \(G \) and \(p \) is a factor of each term in the summation on the right-hand side (by relation ♦). Thus, \(p \) must be a factor of \(|C| \), as well.

Corollary 10: Any group with order the square of a prime is abelian.

Proof: Let \(p \) be a prime and let \(G \) be a group of order \(p^2 \). Suppose, to the contrary, that \(G \) is nonabelian. Then, by Corollary 6.9, the center \(C \) of \(G \) has order \(p \). But then \(G/C \cong \mathbb{Z}_2 \), in violation of Theorem 6.5. This completes the proof.
We have noted that, up to isomorphism, there are two groups of order 4, \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$, and two groups of order 9, \mathbb{Z}_9 and $\mathbb{Z}_3 \times \mathbb{Z}_3$. In light of Theorem 4 and Corollary 10, we can generalize. For any prime p, there are two groups of order p^2, up to isomorphism:

$$\mathbb{Z}_{p^2} \quad \text{and} \quad \mathbb{Z}_{p} \times \mathbb{Z}_{p}$$

Additional Exercises

1. Determine the normal subgroups of D_4.

2. Let $(G, *)$ be a group and let $(H, *)$ be a normal subgroup. Define the operation \otimes on the set G/H of right cosets of H in G by

$$Hx_1 \otimes Hx_2 = H(x_1 \ast x_2)$$

 (a) Show that \otimes is associative.

 (b) Let e denote the identity element of $(G, *)$. Show that $H = He$ is the identity element of $(G/H, \otimes)$.

 (c) For $x \in G$, let x^{-1} denote the inverse of x in $(G, *)$. Show that Hx^{-1} is the inverse of Hx in $(G/H, \otimes)$.

3. Determine the normal subgroups of Q.

4. Let G be a group and suppose G has a finite generating set $\{a_1, a_2, \ldots, a_k\}$. Let H be a subgroup of G. Show that H is a normal subgroup of G if and only if

$$a_iha_i^{-1} \in H$$

for each $i, 1 \leq i \leq k$.

5. Determine the normal subgroups of D_5.

6. Let G be a group and let H be a normal subgroup of G. Prove that, if x has finite order in G, then Hx has finite order in G/H, and the order of Hx in G/H is a factor of the order of x in G.

7. Determine the normal subgroups of A_4.

8. Is Theorem 5 sufficient to determine, for any n, the structure of U_n as a direct product of cyclic groups?

9. With its usual presentation, the center of D_4 is $C = \{e, r^2\}$. Describe the factor group D_4/C.

10. Let G be a group and let H be a subgroup of G. For $g \in G$, define

$$gHg^{-1} = \{ghg^{-1} \mid h \in H\}$$

This set is called the conjugate of H by g. Show that H is a normal subgroup of G if and only if $gHg^{-1} = H$ for every $g \in G$.
11. With its usual presentation, the center of Q is $C = \{e, a^2\}$. Describe the factor group Q/C.

12. Apply Theorem 4 to show that, if G is an abelian group of order n, and if, for some prime p and some positive integer k, p^k is a factor of n, then G contains a subgroup of order p^k.

13. For $n \in \mathbb{Z}^+ - \{1\}$, recall that $n\mathbb{Z}$ denotes the set of multiples of n:

$$n\mathbb{Z} = \{\ldots -3n, -2n, -n, 0, n, 2n, 3n, \ldots\}$$

Since \mathbb{Z} is abelian, $n\mathbb{Z}$ is a normal subgroup of $(\mathbb{Z}, +)$. Show that the factor group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n.

14. With reference to the proof of Theorem 4, verify that the mapping $\phi : G \rightarrow \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$ defined by

$$\phi(x) = (t, \phi'(g))$$

is an isomorphism.

15. Each of the following is a noncyclic abelian group of order 8. Determine whether it is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$ or to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

(a) U_{16} (b) U_{20} (c) U_{24}

16. List, up to isomorphism, all the abelian groups of order:

(a) 800 (b) 27783

17. Each of the following is an abelian group of order 12. Determine whether it is isomorphic to \mathbb{Z}_{12} or to $\mathbb{Z}_6 \times \mathbb{Z}_2$.

(a) U_{13} (b) U_{28} (c) U_{36}

18. List, up to isomorphism, the abelian groups of order 720.

19. Each of the following is a noncyclic abelian group of order 16. Determine whether it is isomorphic to $\mathbb{Z}_8 \times \mathbb{Z}_2$, or to $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, or to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

(a) U_{32} (b) U_{40} (c) U_{48}

20. Let n be a positive integer, $n > 1$, and suppose n has the canonical factorization

$$n = q_1^{t_1} q_2^{t_2} \cdots q_k^{t_k}$$

where $q_1 < q_2 < \cdots < q_k$ are distinct primes and $t_1, t_2, \ldots, t_k \in \mathbb{Z}^+$. Let $t = \max(t_1, t_2, \ldots, t_k)$ and, for $1 \leq i \leq k$, let $p(t_i, t)$ be the number of partitions of t_i having t parts, with parts equal to zero allowed. For example, there are 5 partitions of 4 having 5 parts, with parts equal to zero allowed:

$$4 + 0 + 0 + 0 + 0 \quad 3 + 1 + 0 + 0 + 0 \quad 2 + 2 + 0 + 0 + 0 \quad 2 + 1 + 1 + 0 + 0 \quad 1 + 1 + 1 + 1 + 0$$

Show that the number of abelian groups of order n, up to isomorphism, is
\[\prod_{i=1}^{k} p(t_i, t) \]

Hint: Show that there is a one-to-one correspondence between \(k\)-tuples of the form \((P_1, P_2, \ldots, P_k)\), with \(P_i\) a partition of \(t_i\) into \(t\) parts (with parts equal to zero allowed) and the distinct abelian groups of order \(n\). When \(n = 27,783 = 3^4 \cdot 7^3\), for example, we have \(k = 2, t = 4, t_1 = 4, \text{ and } t_2 = 3\). The pair of partitions

\[(2 + 1 + 1 + 0, 3 + 0 + 0 + 0) \]

of \(t_1 = 4\) and \(t_2 = 3\) into 4 parts corresponds to the direct product

\[\mathbb{Z}_{3^2 \cdot 7^3} \times \mathbb{Z}_{3 \cdot 7^0} \times \mathbb{Z}_{3 \cdot 7^0} \times \mathbb{Z}_{3 \cdot 7^0} \cong \mathbb{Z}_{3087} \times \mathbb{Z}_3 \times \mathbb{Z}_3\]

21. Let \(G\) be a group and let \(H\) be a normal subgroup of \(G\). Prove or disprove: If \(H\) and \(G/H\) are both abelian, then \(G\) is abelian.

22. Consider the group \(G\) of nonzero real numbers under multiplication.

 (a) Show that \(N = \mathbb{R}^+\) is a normal subgroup of \(G\).

 (b) Show that \(H = \{ -1, 1 \}\) is a subgroup of \(G\).

 (c) Show that \(G/N \cong H\).

23. Are the groups \(U_{20}\) and \(U_{24}\) isomorphic? Explain.

24. Let \(G\) be a finite nonabelian group and consider the relation \(\sim\) of conjugacy on \(G\). For \(x, y \in G\), show that:

 (a) If \(x \sim y\), then \(|x| = |y|\).

 (b) If \(x \sim y\), with \(g x g^{-1} = y\) for \(g \in G\), then \((y^k g)^x (y^k g)^{-1} = y\) for any \(k \in \mathbb{Z}^+\).

19. Apply the results of Exercise 24 to redo (more efficiently!) Example 9.