Let m and n be positive integers such that $1 < m < n$. Lagrange's Theorem says that, if G is a group of order n and H is a subgroup of G of order m, then m is a factor of n. As a corollary to the fundamental theorem of finite abelian groups it can be shown that, if G is an abelian group of order n, and m is a factor of n, then G has a subgroup of order m.

The general question is this. Let G be a group of order n and let m be a factor of n. When can we say that G contains a subgroup of order m? We know that the answer to this question isn't, “Always:” A_4 is a group of order 12 and 6 is a factor of 12, but A_4 does not have a subgroup of order 6.

Much of the seminal work on this question was done by the Norwegian mathematician Ludwig Sylow (1832 – 1918). His results are collectively known as the “Sylow theorems.”

Theorem 1 (Sylow's Existence Theorem): Let G be a finite group of order n. If, for some prime p and some positive integer k, p^k is a factor of n, then G has a subgroup of order p^k.

Proof: If G is abelian, then the result follows from the fundamental theorem of finite abelian groups.

In the nonabelian case, the proof is by induction on n. The result is satisfied vacuously when $n = 1$ or when n is prime (in which case the only factors of n are 1 and n), or when $n = 4$. Moreover, the only nonabelian group of order 6 is D_3, and it has both a subgroup of order 2 and a subgroup of order 3. Thus, let $n \geq 8$, and assume, for any n', $1 \leq n' < n$, that if G' is a (nonabelian) group of order n' and if, for some prime p and some positive integer k', $p^{k'}$ is a factor of n', then G' has a subgroup of order $p^{k'}$.

Let G be a nonabelian group of order n and suppose that, for some prime p and some $k \in \mathbb{Z}^+$, p^k is a factor of n. To complete the proof, we must show that G has a subgroup of order p^k. This is obvious if $n = p^k$, so assume that p^k is a proper factor of n.

Consider the class equation

$$|G| = |C| + \sum |[x]|$$

where C is the center of G. If, for some $x \in G - C$, p^k is a factor of $|C_x|$, then we can apply the induction hypothesis with $G' = C_x$ and $k' = k$ to assert that G' has a subgroup of order $p^{k'}$. Since any subgroup of G' is also a subgroup of G, we are done in this case.
Thus, we may assume that, for all \(x \in G - \mathcal{C} \), \(p^k \) is not a factor of \(|\mathcal{C}_x| \). Consider such an \(x \), and consider the relation:

\[
|[x]| |\mathcal{C}_x| = |G|
\]

Since \(p^k \) is a factor of \(|G| \) but is not a factor of \(|\mathcal{C}_x| \), \(p \) must be a factor of \(|[x]| \) for every \(x \in G - \mathcal{C} \). It follows from the class equation that \(p \) is a factor of \(\mathcal{C} \).

Since \(\mathcal{C} \) is abelian, \(\mathcal{C} \) contains a cyclic subgroup of order \(p \), call it \(H \), and let \(h \) generate \(H \). Since \(H \leq \mathcal{C} \), we have that

\[
ghg^{-1} = h
\]

for any \(g \in G \) and any \(h \in H \). Thus, \(H \triangleleft G \).

Let \(G' = G/H \). Then \(p^{k-1} \) is a factor of \(|G'| \). Thus, we may apply the induction hypothesis to \(G' \), with \(k' = k - 1 \), to assert that \(G' \) has a subgroup \(H' \) of order \(p^{k-1} \), say

\[
H' = \{ H, Hx_2, \ldots, Hx_{p^{k-1}} \}
\]

We claim that

\[
K = H \cup Hx_2 \cup \cdots \cup Hx_{p^{k-1}}
\]

is a subgroup of \(G \) of order \(p^k \). It is clear that \(|K| = p^k \), since each right coset of \(H \) in \(G \) contains \(p \) elements, and distinct right cosets are disjoint.

Exercise: Show that \(K \) is a subgroup of \(G \).

This completes the proof.

Definition 1: Let \(G \) be a finite group and let \(p \) be a prime factor of \(|G| \). If \(k \in \mathbb{Z}^+ \) is such that \(p^k \) is a factor of \(|G| \) but \(p^{k+1} \) is not a factor of \(|G| \), then any subgroup of \(G \) of order \(p^k \) is called a \(p \)-**Sylow subgroup** of \(G \).

Example 1: Let \(G \) be a nonabelian group of order 12. Since \(12 = 2^2 \cdot 3 \), we know by Theorem 1 that \(G \) contains a subgroup of order 4 and a subgroup of order 3. Any subgroup of \(G \) of order 4 is a 2-Sylow subgroup, whereas any subgroup of order 3 is a 3-Sylow subgroup.

Any 3-Sylow subgroup of \(G \) is cyclic. In the case of

\[
D_6 = \langle r, s \mid |r| = 6, |s| = 2, s \neq r^3, sr = r^5s \rangle
\]

there is a unique 3-Sylow subgroup — \(\{ e, r^2, r^4 \} \) — and this subgroup is a normal subgroup of \(D_6 \). Contrast this with the situation for

\[
A_4 = \langle a, b \mid |a| = 3, |b| = 2, aba = ba^2b \rangle
\]
Here, there are four Sylow 3-subgroups:

\[
\langle a \rangle = \{e, a, a^2\} \quad \langle ab \rangle = \{e, ab, ba^2\} \\
\langle ba \rangle = \{e, ba, a^2b\} \quad \langle aba \rangle = \{e, aba, a^2ba^2\}
\]

None of these is a normal subgroup; in fact, each one is conjugate to \(H = \langle a \rangle \), since

\[
\langle ab \rangle = a^2ba\langle a \rangle a^2ba, \quad \langle ba \rangle = aba^2\langle a \rangle aba^2, \quad \langle aba \rangle = b\langle a \rangle b
\]

A 2-Sylow subgroup is either cyclic or is isomorphic to the Klein four-group (that is, \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)). Neither \(D_6 \) nor \(A_4 \) contains an element of order 4; hence, for these two groups, any 2-Sylow subgroup is isomorphic to the Klein four-group.

For \(D_6 \), there are three 2-Sylow subgroups, namely,

\[
\{e, r^3, s, r^3s\}, \quad \{e, r^3, rs, r^4s\}, \quad \{e, r^3, r^2s, r^5s\}
\]

None of these is a normal subgroup; in fact, each one is conjugate to \(K = \{e, r^3, s, r^3s\} \):

\[
\{e, r^3, rs, r^4s\} = r^5Kr \quad \text{and} \quad \{e, r^3, r^2s, r^5s\} = rKr^5
\]

On the other hand, for \(A_4 \), there is a unique 2-Sylow subgroup, namely,

\[
N = \{e, aba^2, a^2ba, b\}
\]

and this subgroup is a normal subgroup of \(A_4 \).

Exercise: Recall that there is a third nonabelian group of order 12, namely,

\[
T = \langle a, b \mid |a| = 6, |b| = 4, a^3 = b^2, ba = a^5b \rangle
\]

Show that \(T \) has:

(a) a unique 3-Sylow subgroup, which is a normal subgroup of \(T \);

(b) three distinct 2-Sylow subgroups, each isomorphic to \(\mathbb{Z}_4 \).

Applying Sylow's Existence Theorem with \(k = 1 \), we obtain the following corollary.

Corollary 2 (Cauchy's Theorem): Let \(G \) be a finite group and let \(p \) be a prime such that \(p \) is a factor of \(|G| \). Then \(G \) has an element of order \(p \).

In previous work, we alluded to the idea of conjugate subgroups. Formally, let \(G \) be a group and let \(H \) and \(K \) be subgroups of \(G \). We say that \(K \) is conjugate to \(H \) if

\[
K = gHg^{-1}
\]

for some element \(g \in G \). Just as “conjugacy” of elements is an equivalence relation on \(G \), conjugacy of subgroups is an equivalence relation on the set of subgroups of \(G \).
Exercise: For any group G, show that “conjugacy” is an equivalence relation on the set of subgroups of G.

To prove Sylow’s other theorems, we introduce the idea of a group G acting on a set S. Let G be a group, let S be a set, and let π be a homomorphism from G to the group $S(S)$ of all permutations of S. That is, the function π associates, with any given element $g \in G$, a permutation π_g of S, and the function π has the following property:

$$\pi_{hg}(s) = \pi_h(\pi_g(s))$$

for any two elements $g, h \in G$. Then we say that G acts on S through π, or, more simply, that G acts on S. Note that, if G acts on S through π, then

$$\pi(G) = \{\pi_g \mid g \in G\}$$

is a subgroup of the group of all permutations of S.

Let G act on S (through π). Define the relation \sim on S by

$$s \sim t \iff \pi_g(s) = t \text{ for some } g \in G$$

Exercise: Show that \sim is an equivalence relation on S.

Definition 2: For $s \in S$, the equivalence class containing s under the equivalence relation \sim is called the orbit of s and is denoted by $O(s)$ or by $\text{orb}(s)$. Also, the stabilizer of s is the subset of G denoted by $\text{stab}(s)$ and defined by

$$\text{stab}(s) = \{g \mid \pi_g(s) = s\}$$

Exercise: Show that $\text{stab}(s)$ is a subgroup of G.

Technically, both the orbit of s and the stabilizer of s depend on the group G and the function π, and so we might denote them by

$$O_{G,\pi}(s) \quad \text{and} \quad \text{stab}_{G,\pi}(s)$$

respectively. However, whenever we use these terms, the group G and the function π under consideration will always be clear, so we can use the simpler notation of the definition.

Example 2: Any group G acts on itself through “conjugacy.” That is, let G be a group, and define $\pi : G \to S(G)$ by $\pi(g) = \pi_g$, where
\[\pi_g(x) = gxg^{-1} \]

Then \(\pi_g \) is a permutation of \(G \) — in fact, \(\pi_g \) is an automorphism of \(G \).

Exercise: Verify that \(\pi_g \) is an automorphism of \(G \). As a corollary, it follows that

conjugate subgroups of \(G \) are isomorphic.

For this “action,” and for a given element \(s \) of \(G \),

\[\mathcal{O}(s) = \{ gsg^{-1} \mid g \in G \} = [s] \] is the conjugacy class of \(s \)

Also,

\[\text{stab}(s) = \{ g \mid gsg^{-1} = s \} = \{ g \mid gs = sg \} = C_G(s) \]

that is, \(\text{stab}(s) \) is the centralizer of \(x \). Note that, by Theorem 7 in *Abelian Groups*, if \(G \) is finite, then

\[|\mathcal{O}(s)| = [s] = |G : C_G(s)| = |G : \text{stab}(s)| \]

\[\square \]

Example 3: Let \(G \) be a group and let \(S \) denote the set of subgroups of \(G \). Then \(G \) acts on \(S \) through conjugacy. That is, define \(\pi : G \rightarrow S(S) \) by \(\pi(g) = \pi_g \), where \(\pi_g : S \rightarrow S \) is defined by

\[\pi_g(H) = gHg^{-1} \]

For a fixed subgroup \(H \) of \(G \), its orbit \(\mathcal{O}(H) \) consists of all of the subgroups conjugate to \(H \). Hence, \(\mathcal{O}(H) = \{ H \} \) if and only if \(H \) is a normal subgroup of \(G \). The stabilizer of \(H \) is

\[\text{stab}(H) = \{ g \mid gHg^{-1} = H \} \]

In this case, \(\text{stab}(H) \) is called the *normalizer* of \(H \) in \(G \) and is denoted by \(N_G(H) \).

In the case when \(G \) is finite, define the function \(f \) from the collection of left cosets of \(N = N_G(H) \) to \(\mathcal{O}(H) \) by

\[f(xN) = xHx^{-1} \]

Clearly, \(f \) is onto. Furthermore, for any \(x_1, x_2 \in G \),

\[f(x_1N) = f(x_2N) \iff x_1Hx_1^{-1} = x_2Hx_2^{-1} \]

\[\iff x_1^{-1}x_1Hx_1^{-1}x_2 = H \]

\[\iff x_2^{-1}x_1 \in N \]

\[\iff x_1N = x_2N \]
This shows that f is both well-defined and one-to-one. Therefore,

$$|\mathcal{O}(H)| = |G : N| = |G : \text{stab}(H)|$$

In general, we have the following result.

Theorem 3 (Orbit-Stabilizer Theorem): Let G be finite group and let G act on a set S through π. Then, for any $s \in S$,

$$|\mathcal{O}(s)| = |G : \text{stab}(s)|$$

Exercise: Prove the theorem. Hint: Fix $s \in S$ and let $N = \text{stab}(s)$. Define f from the set of left cosets of N in G to $\mathcal{O}(s)$ by

$$f(xN) = \pi_x(s)$$

Show that f is well-defined, one-to-one, and onto. It follows that

$$|\mathcal{O}(s)| = |\text{im}(f)| = |\text{dom}(f)| = |G : \text{stab}(s)|$$

Corollary 4: Let p be a prime and let G be a group with order a power of p. Let G act on a finite set S through π, and define the subset T of S by

$$T = \{s \in S \mid \mathcal{O}(s) = \{s\}\}$$

Then

$$|T| \equiv |S| \pmod{p}$$

(that is, p is a factor of $|S| - |T|$).

Proof: Since the orbits partition S and S is finite, we can write

$$|S| = |T| + \sum_{s \notin S_0} |\mathcal{O}(s)|$$

$$= |T| + \sum_{s \notin S_0} |G : \text{stab}(s)|$$

by the orbit-stabilizer theorem

Note that each term $|G : \text{stab}(s)|$ in the sum on the right is a multiple of p, and hence so is the sum. It follows that $|S| - |T|$ is a multiple of p.
Theorem 5 (Sylow's Conjugacy Theorem): Let G be a finite group and let p be a prime factor of the order of G. Then:

1. If H is a subgroup of G such that the order of H is a power of p, and K is a p-Sylow subgroup of G, then gHg^{-1} is a subgroup of K for some $g \in G$.

2. If H and K are both p-Sylow subgroups of G, then H and K are conjugate subgroups.

Proof: To prove (1), let H be a subgroup of G such that the order of H is a power of p and let K be a p-Sylow subgroup of G. Let S be the set of left cosets of K in G, and let H act on S through π, with $\pi : H \to S(S)$ defined by $\pi(h) = \pi_h$, where

$$\pi_h(gK) = hgK$$

Then, by Corollary 4,

$$|T| \equiv |S| \pmod p \to |T| \equiv |G : K| \pmod p$$

Note that, since K is a p-Sylow subgroup of G, $|G : K| = |G|/|K|$ is not a multiple of p. Thus, $|T|$ is not a multiple of p. In particular, $|T| > 0$.

Let $g' \in G$ be such that $g'K \in T$. Then $O(g'K) = \{g'K\}$. This means that, for every $h \in H$, $g'K = \pi_h(g'K) = hg'K$. It follows that, for every $h \in H$, $(g')^{-1}hg'K = K$, that is, $(g')^{-1}hg' \in K$. Letting $g = (g')^{-1}$, we have that gHg^{-1} is a subgroup of K.

Part 2 now follows easily from part 1. For, if H and K are both p-Sylow subgroups of G, then, by part 1, $gHg^{-1} \leq K$ for some $g \in G$, and $|gHg^{-1}| = |H| = |K|$. Therefore, $gHg^{-1} = K$, showing that H and K are conjugate subgroups.

Corollary 6: Let G be a finite group and let p be a prime factor of the order of G. If G has a unique p-Sylow subgroup N, then N is a normal subgroup of G. Conversely, if N is a p-Sylow subgroup of G and $N \triangleleft G$, then N is the unique p-Sylow subgroup of G.

Theorem 7 (Sylow's Counting Theorem): Let G be a finite group, let p be a prime factor of the order of G, and let s_p denote the number of distinct p-Sylow subgroups of G. Then s_p is a factor of $|G|$ and $s_p \bmod p = 1$.

Proof: Let K be a p-Sylow subgroup of G. Then, by Theorem 5, part 2,

$$s_p = |G : N_G(K)|$$

showing that s_p is a factor of G. Let S be the set of p-Sylow subgroups of G, and let K act on S through conjugation (as in Example 3). Then, by Corollary 4,
Sylow Theorems

Clearly, $K \in T$, since $KK^{-1} = K$ for any $k \in K$. Suppose $K' \in T$. Then, for any $k \in K$, $kK'k^{-1} = K'$. It follows that $K \leq NG(K')$. Now then, $NG(K') \leq G$, and so both K and K' are p-Sylow subgroups of $NG(K')$. But, clearly, $K' \triangleleft NG(K')$. Thus, by Corollary 6, K' is the unique p-Sylow subgroup of $NG(K')$. Hence, $K = K'$, and it follows that $|T| = 1$. This shows that $s_p \equiv 0 \pmod{p}$.

Next we present several applications of the Sylow theorems.

Example 4: Let p and q be distinct primes and let G be a group of order $p^i q^j$ for some positive integers i and j. Show that, if G has a unique p-Sylow subgroup N_1 and a unique q-Sylow subgroup N_2, then G is abelian.

Solution: Let p and q be distinct primes and let G be a group of order $p^i q^j$ for some positive integers i and j. Suppose G has a unique p-Sylow subgroup N_1 and a unique q-Sylow subgroup N_2. Then, by Corollary 6, $N_1 \triangleleft G$ and $N_2 \triangleleft G$. Also, $G = N_1 N_2$ and $N_1 \cap N_2 = \{e\}$, where e is the identity of G.

To show that G is abelian, it suffices to show that any element $x_1 \in N_1$ commutes with any element $x_2 \in N_2$. Consider the element $x_1 x_2 x_1^{-1} x_2^{-1}$:

\[
 x_1 x_2 x_1^{-1} x_2^{-1} = (x_1 x_2 x_1^{-1}) x_2^{-1} \in N_2 \quad \text{since} \ N_2 \triangleleft G
\]

\[
 x_1 x_2 x_1^{-1} x_2^{-1} = x_1 (x_2 x_1^{-1} x_2^{-1}) \in N_1 \quad \text{since} \ N_1 \triangleleft G
\]

It follows that $x_1 x_2 x_1^{-1} x_2^{-1} = e$, or that $x_1 x_2 = x_2 x_1$. Therefore, G is abelian.

Example 5: Let q be an odd prime. Show that, up to isomorphism, there are two groups of order $2q$: \mathbb{Z}_{2q} and D_q.

Solution: Let G be a group of order $2q$, with q an odd prime. If G is abelian, then it follows from the fundamental theorem of finite abelian groups (FTFAG) that $G \cong \mathbb{Z}_{2q}$.

Suppose G is nonabelian. Let N be a q-Sylow subgroup of G. Since $|G : N| = 2$, N is a normal subgroup of G. By Corollary 6, N is the unique q-Sylow subgroup of G. It follows that every element in $G - N$ has order 2.

Note that N is cyclic; say, $N = \langle r \rangle$. Let $s \in G - N$. Then $G = N \cup Ns$ and it follows that r and s generate G. The question is, What is sr?
Since G is not abelian, $sr \neq rs$ and, since $|srs| = |r| = q$, $srs = r^t$ for some t, $2 \leq t \leq q - 1$. Now then,

$$r^{t^2} = (r^t)^t = (srs)^t = sr^t s = r$$

Therefore, $t^2 \mod q = 1$, that is, q is a factor of $t^2 - 1$. Note that $t^2 - 1 = (t + 1)(t - 1)$, and q is not a factor of $t - 1$. It follows that q is a factor of $t + 1$. This implies that $t = q - 1$. Therefore,

$$G = \langle r, s \mid |r| = q, |s| = 2, sr = r^{q-1}s \rangle \cong D_q$$

Example 6: Show that the only group of order 15, up to isomorphism, is \mathbb{Z}_{15}. In other words, any group of order 15 is cyclic.

Solution: We apply Example 4. Let G be a group of order 15, and let s_3 and s_5 denote the number of distinct 3-Sylow subgroups and 5-Sylow subgroups of G, respectively. By Sylow's counting theorem, we can say that

$$s_3 = 1 \quad \text{and} \quad s_5 = 1$$

Hence, G has a unique 3-Sylow subgroup and a unique 5-Sylow subgroup. It follows from Example 4 that G is abelian, and it follows from (FTFAG) that the only abelian group of order 15, up to isomorphism, is \mathbb{Z}_{15}.

Additional Exercise

Let G be a group of order $3q$, with q a prime, $q \geq 3$.

(a) If $q \mod 3 \neq 1$, show that $G \cong \mathbb{Z}_{3q}$.

(b) Otherwise (if $q \mod 3 = 1$), show that there are two groups of order $3q$, up to isomorphism, \mathbb{Z}_{3q}, and the nonabelian group G having the presentation

$$G = \langle a, b \mid |a| = q, |b| = 3, ba = a^2b \rangle$$