Dr. Straight's Maple Examples

Example I: Numeric Operations and Functions
Functions Covered: ceil, denom, evalf, floor, frac, Fraction, ifactor, ifactors, igcd, igcdex, ilcm, iquo, irem, mod, numer, round, sign, trunc

The first thing to keep in mind about Maple is that it prefers to work with numbers exactly, rather than with approximations. Hence, if we enter

\[
t := \sqrt{5}
\]

Maple stores the exact value of the square root of 5 in \(t \). If we want a decimal approximation to the square root of 5, we use the \texttt{evalf} command, which means, "evaluate as floating-point."

\[
t := \sqrt{5}
\]

By default, \texttt{evalf} gives 10 digits; however, there is an optional second argument that specifies the number of digits, for example

\[
evalf(t, 12);
\]

Here are several more examples illustrating the use of \texttt{evalf}:

\[
m := (-3)^4;
\]

\[
k := \sqrt[3]{27};
\]

\[
k := \texttt{evalf}(\sqrt[3]{27});
\]

\[
k := \texttt{simplify}(\sqrt[3]{27});
\]

\[
f := \frac{37}{104};
\]

\[
evalf(f);
\]

Fractions can be constructed using the division operator, as seen above, or by using the \texttt{Fraction} constructor. The functions \texttt{numer} and \texttt{denom} return the numerator and denominator of a given fraction, respectively.

\[
f := \frac{111}{312};
\]

\[
f := \frac{37}{104}
\]

\[
f := \text{Fraction}(111, -312);
\]
\[f := -\frac{37}{104} \]

\[n := \text{numerator}(f); \quad n := -37 \]

\[d := \text{denominator}(f); \quad d := 104 \]

Note that a fraction is always stored in lowest terms, with a positive denominator.

The `iquo` (for "integer quotient") and `irem` (for "integer remainder") functions are used to perform integer division. For example:

\[\text{iquo}(31, 7); \quad 4 \]

\[\text{irem}(31, 7); \quad 3 \]

\[\text{iquo}(-31, 7); \quad -4 \]

\[\text{irem}(-31, 7); \quad -3 \]

\[\text{iquo}(31, -7); \quad -3 \]

\[\text{irem}(31, -7); \quad 3 \]

\[\text{iquo}(-31, -7); \quad 4 \]

\[\text{irem}(-31, -7); \quad -3 \]

If, like me, you were taught that a remainder is never negative, then you may take issue with Maple's results that, when -31 is divided by 7, the quotient is -4 and the remainder is -3. For this reason, I recommend avoiding use of the iquo and irem functions when the dividend is negative. For computing remainders, I recommend using the `mod` operator:

\[31 \mod 7; \quad 3 \]

\[-31 \mod 7; \quad 4 \]

\[31 \mod -7; \quad 3 \]

\[-31 \mod -7; \quad 4 \]

Here are several examples related to "rounding" numbers:

\[\text{round} (\sqrt{7}); \quad 3 \]

\[\text{round} (-\sqrt{7}); \quad -3 \]

\[\text{round}(2.5); \quad 3 \]
\begin{verbatim}
> trunc(sqrt(7));
 2

> trunc(-sqrt(7));
 -2

> frac(sqrt(7));
 sqrt(7) - 2

> evalf(\%);
 0.645751311

Here, we use the percent symbol, \%, to refer to the result of the preceding computation.

> floor(sqrt(7));
 2

> ceil(sqrt(7));
 3

The sign function returns the "sign" of its argument, which must be a fraction or floating point number; in particular, the sign of a negative number is -1 and the sign of a nonnegative number is 1. For example:

> sign(evalf(sqrt(7)));
 1

> sign(0);
 1

> sign(evalf(-sqrt(7)));
 -1

> sign(-11/37);
 -1

Many of the well-known constants are built into Maple. They can be referenced by "name" or by "symbol" (refer to "Common Symbols"). For example:

> evalf(\pi);
 3.141592654

> evalf(\pi);
 3.141592654

> evalf(exp(1));
 2.718281828

> evalf(e);
 2.718281828

> sqrt(-1);
 I

> \bar{I}^2;
 -1

We have the familiar igcd and ilcm functions, to compute greatest common divisors and least common multiples, respectively. Each of these functions can take any number of arguments. For example:

> igcd(54, 72);
 18
\end{verbatim}
OK, so igcd simply implements the Euclidean algorithm. What about the extended Euclidean algorithm? Not to worry, Maple has it covered -- the igcdex function has two additional arguments, \(s \) and \(t \), so that
\[
\text{igcdex}(a,b,s,t)
\]
not only returns \(d = \gcd(a,b) \), but also stores in \(s \) and \(t \) values such that
\[
d = as + bt
\]
Here's an example:
\[
\text{igcdex}(2544, 5436, s, t);
\]
\[
12
\]
\[
s;
\]
\[
203
\]
\[
t;
\]
\[
-95
\]
Finally, we have the ifactor function for finding prime factorizations.
\[
\text{ifactor}(360);
\]
\[
(2)^3 (3)^2 (5)
\]
Even more useful is the ifactors function:
\[
\text{ifactors}(360);
\]
\[
[1, [[2, 3], [3, 2], [5, 1]]]
\]
\[
\text{ifactors}(-360);
\]
\[
[-1, [[2, 3], [3, 2], [5, 1]]]
\]
Note that, for an integer \(m \) (not 0), \(\text{ifactors}(m) \) returns a list. The first element of this list is \(\text{sign}(m) \). Assuming \(|m| > 1 \), the second element of the list is another list, made up of two-element sublists. Each of these sublists has the form \([p,k]\), where \(p \) is a prime factor of \(m \) and \(k \) is the exponent on \(p \) that appears in the prime factorization of \(m \). Also, these sublists are ordered according to the prime factors.

Given a list \(c \), the notation \(c[i] \) denotes the \(i \) th element of \(c \). For example:
\[
\text{c := ifactors}(360)[2];
\]
\[
\text{c := [[2, 3], [3, 2], [5, 1]]}
\]
\[
\text{c[2]};
\]
\[
[3, 2]
\]
\[
\text{c[2][1]};
\]
\[
3
\]

Challenge Exercise: Assuming the variable \(n \) holds a positive integer that is not a power of 2 (that is, \(n \) contains at least one odd prime factor), write a Maple command that returns the smallest odd prime factor of \(n \).

Caution: Sometimes, you may get a strange error when trying to use a particular variable, say \(v \). If this happens, try checking whether \(v \) is already defined by using the command \(?v\). If \(v \) has a value, and you
need it to be "free," use the command "v := v" to clear v. Alternately (and with caution), you may issue the "restart" command, which clears Maple's memory.