36. \(\phi((4, 4)) = \phi(4(1, 1)) = 4\phi((1, 1)) = 4\phi((3, 2) - (2, 1)) = 4(\phi((3, 2)) - \phi((2, 1)) = 4(a - b) \).

40. Define a map \(\phi : G/N \to G/M \) by \(g + N \mapsto g + M \) for all \(g \in G \). First we show \(\phi \) is well-defined. Suppose \(g_1, g_2 \in G \) such that \(g_1 + N = g_2 + N \). Then \(g_1 - g_2 \in N \). Since \(N \leq M \), \(g_1 - g_2 \in M \) also. Thus \(g_1 + M = g_2 + M \), i.e. \(\phi(g_1 + N) = \phi(g_2 + N) \).

Now let \(x \in \ker \phi \). Then \(x = g + N \) for some \(g \in G \), and \(\phi(x) = \phi(g + N) = g + M = M \). (\(M \) is the identity of \(G/M \).) It follows that \(g \in M \), i.e. \(g + N \in M/N \). We’ve shown \(\ker \phi \subseteq M/N \). For the reverse inclusion, let \(x \in M/N \). Then \(x = m + N \) for some \(m \in M \). Thus \(\phi(x) = \phi(m + N) = m + M = M \), so that \(x \in \ker \phi \). This shows \(M/N \in \ker \phi \). Thus \(M/N = \ker \phi \). Therefore, by the First Isomorphism Theorem,

\[
\frac{G/N}{M/N} \approx G/M.
\]

44. Let \(\phi : G \to G/N \) be the natural homomorphism. Let \(g \in G \). (Note \(g \) has finite order.) Then \(\phi(g) = gN \). By Property 3 of Theorem 10.1, \(|\phi(g)| \) divides \(|g| \), i.e. \(|gN| \) divides \(|g| \).

58. Let \(\phi : \mathbb{Z} \to S_3 \) be a homomorphism. Since \(\mathbb{Z} \) is cyclic, \(\phi(\mathbb{Z}) \) must be cyclic by Property 2 of Theorem 10.2. Thus \(\phi(\mathbb{Z}) \neq S_3 \) since \(S_3 \) is noncyclic. There are no homomorphisms from \(\mathbb{Z} \) onto \(S_3 \).

Since 1 is a generator of \(\mathbb{Z} \), \(\phi \) is completely determined by the image of 1. Since 1 has infinite order, there are no restrictions on the image of 1. Thus each element of \(S_3 \) is a possible image for 1. There are 6 homomorphisms from \(\mathbb{Z} \) to \(S_3 \).