The Invertible Matrix Theorem (complete version). Let \(A \) be a square \(n \times n \) matrix. Then the following statements are equivalent. (That is, for a given \(A \), they are either all true or all false.)

a. \(A \) is an invertible matrix.
b. \(A \) is row equivalent to the \(n \times n \) identity matrix.
c. \(A \) has \(n \) pivot positions.
d. The equation \(Ax = 0 \) has only the trivial solution.
e. The columns of \(A \) form a linearly independent set.
f. The linear transformation \(x \mapsto Ax \) is one-to-one.
g. The equation \(Ax = b \) has at least one solution for each \(b \) in \(\mathbb{R}^n \).
h. The columns of \(A \) span \(\mathbb{R}^n \).
i. The linear transformation \(x \mapsto Ax \) maps \(\mathbb{R}^n \) onto \(\mathbb{R}^n \).
j. There is a \(n \times n \) matrix \(C \) such that \(CA = I_n \).
k. There is a \(n \times n \) matrix \(D \) such that \(AD = I_n \).
l. \(A^T \) is an invertible matrix.

* m. The columns of \(A \) form a basis for \(\mathbb{R}^n \).

* n. \(\text{Col} \ A = \mathbb{R}^n \).

* o. \(\text{dim Col} \ A = n \).

* p. \(\text{rank} \ A = n \).

* q. \(\text{Nul} \ A = \{0\} \).

* r. \(\text{dim Nul} \ A = 0 \).

* s. The number 0 is not an eigenvalue of \(A \).

* t. The determinant of \(A \) is not zero.

We could also add a bunch of statements about \(\text{Row} \ A \) and \(A^T \), but that’s too much writing for stuff that’s so obvious.

* Characterizations added since the original statement of the IMT in Chapter 2.