

Leader Checklist

\square Read through the module.
\square Make copies of the coloring sheets at the end of the module.
\square Gather additional supplies: Crayons, colored pencils, or markers

- Choose a coloring sheet ${ }^{1}$ and dive in! It's a very calming way to pass the time.
- Challenge \#1: Make sure that no two adjacent regions have the same color. That is, if two regions share a boundary, they should be different colors. (If they just meet at a corner, that's okay - they can be the same color if you like.)
- Challenge \#2: Carry out Challenge \#1 while using the smallest possible number of colors.
- A map maker might be very interested in these challenges!
- If you're coloring countries on a map, it's important to make sure that neighboring countries are different colors. In general, how many colors do you need in order to do this?
- What about this map? How many colors do you need?
- Notice that the country of Eck is in two separate pieces, just like the state of Michigan.

- That's a rare situation - let's rule that out. On maps where every country is a single connected region, how many colors do you need? Draw some make-believe maps and try to color them using the minimal number of colors. Can you always do it in three colors? Four? Five?
- If you're getting tired of coloring, you can switch to using numbers, like in the image to the right.

[^0]- If you think about $i t$, the actual shapes of the countries aren't important. What matters is which countries are next to each other.
- We can represent each map with a graph (a collection of vertices, some of which are joined by edges). Each country is represented by a vertex, and two vertices are
 joined by an edge exactly when the two countries share a border.
- Coloring the countries on the map corresponds to labeling the vertices in the graph in such a way that no two adjacent vertices have the same label. Such a labeling is called a proper vertex labeling of the graph.
- What's the smallest number of labels we need to do this? That's the vertex chromatic number of the graph. Can you find the vertex chromatic number of each of these graphs?

- Follow-up:
- Read about the Four Color Theorem and its history. Who first claimed to have proved it? Who finally did prove it?
- You can also label the edges of a graph so that no two adjacent edges have the same label. Such a labeling is called a proper edge labeling, and the edge chromatic number of the graph is the smallest number of labels that we need to do this. Can you find the edge chromatic numbers of the graphs above?

https://clipart-library.com/optical-illusion-coloring-pages-printable.html

https://clipart-library.com/optical-illusion-coloring-pages-printable.html

https://clipart-library.com/optical-illusion-coloring-pages-printable.html

https://clipart-library.com/optical-illusion-coloring-pages-printable.html

[^0]: ${ }^{1}$ All attached coloring sheet images are taken from the website https://clipart-library.com/optical-illusion-coloring-pagesprintable.html.

